Gauss-Seidel and Relaxation Techniques						Contributed by
********Matrix******				Const.	Soln.	William Ferger
-	-	-	-	-		AS-EASY-AS
	-8	1	2	0	1	
	5	7	-3	10	2	After you Enter
	2	1	-2	-2	3	the Matrix and
-	-	-	-	-		the constants,
			0			press Alt-A
	0	0	o< X1	Seidel		to perform
	0	1.4285714	0< X2	Seidel		the calculations
	0	1	0< X3	Seidel		
-	-	-	-	-		
			0			This is only mε
			0			as a demo of th
	0	0	o< X1	Over/	Und	program's abili
	0	0	0< X2	Over/	Und	Validation of re
	0	0	0< X3	Over/	Und	is specific user'
-	-	-	-	-		responsibility!

***** Press Alt-H for Information ******

This is a simple template to demonstrate the ability of AS-EASY-AS to perform iterative operations, while also showing an application of the Gauss-Seidel method of solving a set of equations using the Over/Under Relaxation method. The theory behind this method can be found in any good textbook on numerical methods.

- A1..C3 Contain the coefficients for a set of three equations
- D1..D3 Contain the constants
- E1..E3 Contain the solutions for X,Y, and Z using the matrix Solution available in AS-EASY-AS.
- C9..C11 Contain the solutions using the Gauss-Seidel method C15..C17 Contain the solution using the Over/Under technique

^{*} Remember, the initial guess and the relaxation factor determine how quickly the answers will converge!

^{**} Press Home to Return to the Data Area **

```
/sgpd{let iit1,0} {let init2,0} {let relax,0}/sgpe{goto a4}
:
sen
User
                       /sgrm/rlninit1~/rlninit2~/rlnrelax~
                       /sgpd/aedata~esolve~/sgpe
r
                       {invalue "Enter Guess For Seidel Solution: ",c8} {update}
                       {invalue "Enter Guess For Over/Under Relaxation Solution: ",c13}{
                       {invalue "Enter Guess For Relaxation Factor: ",c14} {update}
                       /rlyg13~/rlyg14~{update}
                       /rlyinit1~/rlyinit2~/rlyrelax~/rlydata~
3.
                       /rlng13..g18~/reg13..g18~{let g13,"Keep Pressing F9 to"}
                       {let g14,"Perform the iterations"}
                       {let g15,"Until Conversion!"}/rlyg13..g18~
ant
e
ties.
esults
'S
                       {home} {pgdn}
```

update}